Pre-clase Warm-up!!!
Which picture shows the region of integration of the double integral

$$
\int_{0}^{1} \int_{2 x}^{2} e^{\sin (x y)} d y d x
$$

The lines $y=2 x$ and $y=2$ are signipkiant
If you have to sketch a region of integration, show features like the drawings an the right: axes, lines approximately going through the origin, labeling if needed to clarify -

> a.

b.

e. None of the above.

d. $/$

Section 5.5 The Triple Integral

We learn

- The triple integral over a rectangular box is defined by Riemann sums.
- The integral satisfies similar formal properties to the double integral.
- We can extend the triple integral to elementary regions in $R \wedge 3$.
- We get practice doing triple integrals over more complicated regions.

Typical questions:

a. Like 5.5 questions 3, 4: Perform the integration over the box indicated

$$
\begin{aligned}
& \iiint_{B} x y d x d y d z \text { where } B=[0,1] x[1,2] \times[1,2] \\
& \text { or } \iiint_{B} x y d V \text { or } \int_{1}^{2} \int_{\sim}^{2} \int_{0}^{1} x y d x d y d z
\end{aligned}
$$

b. Like 5.5 questions 11, 12: Find the volume of the region bounded by the surfaces

$$
z=2 y, z=6-y, y=x^{\wedge} 2, y=2-x^{\wedge} 2
$$

Riemann sums

These are similar to the 2-D case. We have a rectangular box
$B=[a, b] \times[c, d] \times[p . q]$ and a fanctuar

$$
f(x, y, z)
$$

We chivide each side of the box in to small intervals of lengths $\Delta x, \Delta y, \Delta z$

A Reran sum looks like.

$$
\sum_{L \lambda J, k} f\left(c_{l y k}\right) \Delta x \Delta y \Delta z
$$

We say f is in tegrable over B if these sums approach a common value d as $\Delta x, \Delta y, \Delta z \rightarrow 0$, cigk takes on all possibilities.

$$
\begin{aligned}
& \text { Notation: } d=\iiint_{B} f d V=\iiint_{B} f d x d y d z \\
& =\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} f d x d y d z
\end{aligned}
$$

- The integral of f is number.
- We can interpret $\iiint F d V$ in rations ways.

1. $\iiint_{B} 1 d V=$ volume of B
2. $\iiint_{B} f d V=4-D$ volume under the graph of f in R^{4}

Properties:

- Integrals over a box can be evaluated as iterated integrals.
- Fubini's theorem
- Things like the upper and lower bounds, the mean value theorem

$$
\iiint_{l_{\text {numbers }}}^{a f^{\prime}+b g \text { functuns }_{\prime}^{l}} d V=a \iiint f d V+b \iiint g d V
$$

Typical questions:
a. Like 5.5 questions 3, 4: Perform the integration over the box indicated

$$
\iiint_{B} x y d x d y d z \text { where } B=[0,1] \times[1,2] \times[1,2]
$$

$$
\text { or } \iiint_{B} x y d V
$$

The rategral is $\int_{1}^{2} \int_{-1}^{2} \int_{0}^{1} x y d x d y d z$

$$
\begin{aligned}
& =\int_{1}^{2} \int_{-1}^{2}\left[\frac{x^{2} y}{2}\right]_{0}^{2} d y d z \\
& =\int_{1}^{2} \int_{-1}^{2} \frac{y}{2} d y d z=\int_{1}^{2}\left[\frac{y^{2}}{4}\right]_{-1}^{2} d z \\
& =\int_{1}^{2}\left(1-\frac{1}{4}\right) d z=\left[\frac{3 z}{4}\right]_{1}^{2} \\
& =\frac{3}{4}
\end{aligned}
$$

Elementary regions
b. Like 5.5 questions 11, 12: Find the volume of the region bounded by the surfaces

This region extends vertically with cut off ends and
cross - section (most of the trine)

We integrate w.r.t 2 first

$$
\int_{-1}^{1} \int_{x^{2}}^{2-x^{2}} \int_{2 y}^{6-y} d z d y d x=
$$

Pre-class Warm-up!!!

Match integral (a) to the correct region of integration integral over a region D. Match the integral with the correct region of integration.
(a) $\int_{0}^{2} \int_{0}^{3} \int_{-\sqrt{9-x}}^{\sqrt{9-x}} d y d z d x$
(c) $\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} d z d y d x$
(b) $\int_{0}^{2} \int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} d y d x d z$
(d) $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x} d z d x d y$

(i)

(ii)

(iii)
(iv)
2. Evaluate the following triple integral:

$$
\iiint_{W} \sin x d x d y d z
$$

where W is the solid given by $0 \leq x \leq \pi, 0 \leq y \leq 1$, and $0 \leq z \leq x$.

Elementary regions are reguns between the graphs of two functuns like $z=u_{1}(x, y), \quad z=u_{2}(x, y)$

This is z-single.
or $x=u_{1}(y, z) \quad u_{2}(y, z)$

This is x-simple

Elementary regions.

In question 1, which of (i), (ii), (iii), (iv) are elementary? With respect to which of x, y, and z ?

1. In parts (a) through (d) below, each iterated integral is an integral over a region D. Match the integral with the correct region of integration.
(a) $\int_{0}^{2} \int_{0}^{3} \int_{-\sqrt{9-x}}^{\sqrt{9-x}} d y d z d x$
(c) $\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} d z d y d x$
(b) $\int_{0}^{2} \int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} d y d x d z$
(d) $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x} d z d x d y$

(i)

(ii)

Which variable would you use to integrate first in (i), (ii) ?

Are any of (i) (ii) (iii) (iv) not elementary writ one of x, y, z ?

(iii)

(iv)
2. Evaluate the following triple integral:
integrating writ
x first ic $\quad \iiint_{W} \sin x d x d y d z$,
where W is the solid given by $0 \leq x \leq \pi, 0 \leq y \leq 1$, and $0 \leq z \leq x$.

Solution Get an equation for the blue plane

$$
\begin{aligned}
& z=A x+B y+D \quad \text { where } A=\text { slope in } \\
& B=-3 \text {-direction } z-3 \\
& B=-2 \\
& z=-3 x-2 y \quad \text { infection }=-2 \\
& \int_{0}^{2} \int_{0}^{2-3 x} \int_{0}^{2} \int_{0}^{2} 2 z d z-3 x-2 y \\
& =\int_{0}^{3} \int_{0}^{2-\frac{2 y}{3}} \int_{0}^{6-3 x-2 y} 2 z d z d x d y
\end{aligned}
$$

blue
The plane is $z=6-3 x-2 y$
The bottom edge is $y=3-3 x / 2 \quad$ Answ. 9

Example. Find $\iiint_{W} 3 x y d V$ where W is the region bounded by the plane $z=2$, and the surface $z=x^{\wedge} 2+2 y^{\wedge} 2$ in the region $x>0, y>0$

$$
\begin{aligned}
& 1 \int_{0}^{1 s} \int_{0}^{\sqrt{2}} \int_{x}^{1-\frac{x}{2}}{ }_{0} \\
& \text { first integral }
\end{aligned}
$$

2

$$
\int_{x^{2}+2 y^{2}}^{2} 3 x y d z d y d x
$$

Answ: $\frac{1}{2}$

Like question 14.
Which variable would you choose to integrate with first? The region is the intersection of two cylinders. of radius a

View from the x-axis. The cross-section is square

Integrate first w.r.t. y and z Last x.
We get

$$
\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{+\sqrt{a^{2}-x^{2}}} \int_{-\sqrt{a^{2}-x^{2}}}^{+\sqrt{a^{2}-x^{2}}} d y d z d x
$$

Like question 27. Which variable would you use to integrate first?
Cylinder with part of a sphere on top

x, y first. breaks the \int in 2 pieces

Sphere top requires

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2} \leq b \\
& \int_{-a}^{a} \int_{-\sqrt{a-x^{2}}}^{\sqrt{a-x^{2}}} \int_{0}^{\sqrt{b-x^{2}-y^{2}} d z d y d x} \text { dz }
\end{aligned}
$$

where the cylinder's $x^{2}+y^{2} \leqslant a$ Also $z \geq 0$.

